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CHOQUET THEORY FOR SIGNED MEASURES

CONSTANTIN P. NICULESCU

Abstract. We introduce the notion of barycenter for a class of non-necessarily positive Radon
measures and prove on this basis several inequalities which extend classical results such as
Steffensen’s inequality, Fink’s version of the Hermite-Hadamard inequality, Fuchs ' extension of
the majorization inequality of Hardy-Littlewood-Pola etc.

A classical result in Real Analysis is the Hermite-Hadamard inequalitywhich
gives us an estimate of the mean value of a continuous convex function. Precisely, if
f : [a b] — R issuch afunction, then

b

SeeD. S. Mitrinovi€ and |. B. Lackovic [8] for a complete history of this result.
In arecent paper, A. M. Fink [3] noticed that a Hermite-Hadamard type inequality
isstill available for certain real Radon measures. His extension of (HH) is asfollows:

1 b b—x X, —a
f(x gi/fxd X) < E . f(a) + =E f(b FHH
() < gy [ TGO <Gk f@ 2 fk) (FHR)
for every continuous convex function: fa, b] — R and every real Radon measuge
on [a, b], provided thatu is “end positive” in the sense that

t b
u(a.b)) > 0, /(t—x)du(x>>0and/t (x-du(x) >0  (EP)

for every te [a, b]. Here x, = f:x du(x)/u([a, b]) representsthe barycenter of L.

As we noticed in [9], in the case of Radon probability measures, Fink’s result
can be easily deduced from the Choquet theory, a theory whose highlights have been
presented by R. R. Phelps in his book [11]. The purpose of the present paper is to
indicate a slight generalization of the Choquet theory for signed measures, so that the
entire result of Fink be covered. It turns out that this extension encompasses many
other important results such as Steffensen’sinequality and the majorization principle of
Hardy, Littlewood and Polya (as extended by L. Fuchs [4]).
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Key words and phrasesconvex function, barycenter, Choquet theory.
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1. Thebarycenter of an essentially positive measure

Throughout this paper K will denote a compact convex subset of alocally convex
Hausdorff space E and C(K, R) will denote the space of al continuous real functions
on K. The classical Choquet theory relates the geometry of K with the cone C, of
all continuous convex real functionson K; C — C isdensein C(K, R), by the Stone-
Weierstrass theorem. Much of that theory makes use of the space A(K,R) = Cn —C,
of al continuous affine functionson K. Thisisarich space, asit contains

Elk +R-1={X|k+a; X e E'anda € R}

as adense subspace. See [11], Ch. 4, Proposition 4.5.

An easy conseguence of the Hahn-Banach separation theorem is that the convex
functions can be described as envelopes of affine functions. In fact, the following
assertion holds:

LEMMA 1. For every f € C there exists a sequence of affine functionseh
A(K, R) such that f= suphy.

Proof. See [11], page 19, where the case of concave functionsis described. B

The connection between the points of K and the positive functionalson C(K, R)
makes the object of Choquet's theory, as presented in [11]. The key notion is that
of barycenter. Every point of K can be seen as the barycenter of a Radon probability
measureon K, and every such ameasure hasabarycenter. We shall enlargethispicture,
by allowing the participation of certain signed measures:

DEFINITION 1. A Popoviciu measurd abbreviated, a P— measure) is any real
Radon measure p on K such that

g(K) >0 and / f*(x)du(x) >0 forevery feC. (PM)
K

When K is an interval [a b] and p is area Radon measure on [a b] with
u([a b]) > 0O, the condition (PM) coincideswith the condition of end positivity (EP)
mentioned above, a fact which was known to T. Popoviciu [12]. In fact, (PM) yields

u(K) >0 and / (X'(X) +t)" du(x) >0 foreveryx’' € E' andeveryt € R
K

(wPM)
andthedual of R consistsonly of homoteties x’ : x — sx. T. Popoviciu'sargument for
the other implication, (EP) = (PM), wasasfollows: If f > O isa piecewiselinear
continuousand convex function, then f can be represented as afinite combination with
non-negative coefficients of functions of theform 1, (x —t)* and (t — x)™, sothat

/ F(x) du(x) > 0;
K

in the generd case, approximate f ™ by piecewise linear continuous and convex func-
tions. It isworth noticing that T. Popoviciu [12] was interested in a slightly different
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problem, precisely, when areal Radon measure on aninterval [a, b] isnon-negativefor
al n— convex functions on that interval.

An aternativeargument for (EP) = (PM ), based on theintegral representation
of convex functions on intervals, was done by Fink [3], Theorem 1.

ExaMPLE 1. (The discrete casepupposethat x; < ... < Xp arerea pointsand
P, ..., pn arereal weights. According to the discussion above, the discrete measure
p=Sr_ Pk, isaPopoviciumeasureif and only if

n m n
Dp>0 > pXm—x) =0 and Y p(Xk—Xm) >0 (dEP)
k=1 k=1

k=m

forevery me {1,...,n}. A specia case when (dEP) holdsis the following, used by
Steffensen in his famous extension of Jensen’s inequality:

n

m n
> k>0 and 0<) <Y po forevery me{1,....n}. (dSY)
k=1

k=1 k=1

ExAMPLE 2. (The continuous caseln the case of absolutely continuousmeasures
du = p(x) dx, thecondition (EP) readsas:

b t b
/ p(x) dx > 0, / (t—x)p(x)dx>0 and / (x—t)p(x)dx >0 (cEP)
a a t

for every t € [a b]. Asaparticular case, we obtain that (x? + a) dx is a Popoviciu
measureon [—1, 1] if a> —1/3 (though non-positiveif a € (—-1/3,0)).
A stronger (but more suitable) condition than ( cEP) isthe following:

b t b
/ p(x)dx>0 and 0< / p(x) dx < / p(x) dx foreveryt € [a,b]. (cSt)
a a a

Integrating inequalitiesis not generally possible in the framework of signed mea-
sures. However, for the Popoviciu measures this is possible under certain restrictions,
as (PM) yields easily the following implication:

LEMMA 2. Suppose thatt is a Popoviciu measure on K. TherehA(K, R), f €
C and hg f implies

[ n0dueo < [ 00 dut)
K K
An immediate consequenceis asfollows:

COROLLARY 1. Suppose thap: is a Popoviciu measure on K and f is an affine
function on K such thatr < f < B for some real numbers, 3. Then

1
a<HRSAfWNMM<ﬁ
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As a consequence of the above corallary, if u isaPopoviciu measureon K, then
lt|AK, R)|| = u(K). However, thenormof u/u(K) asaRadon measureon K (i.e.,
asafunctional on C(K, R)) can be arbitrarily large. In fact,

! 2
/ (x2+a)dx=§+2a

-1

2 -t 1
Z 42 2 =
<3+ a) /4|X +a|dx T3

for a > —1/3. This makes a serious difference with respect to the case of positive
Radon measures, where the norm of p/u(K) is1.

and

LEMMA 3. Every Popoviciu measurg on K admits a barycenter i.e., a poin, x
in K such that

050 = 5 [ 100t (8)

for every continuous linear functional f on E.
The barycenter x is unique with this property. This is a consequence of the
separability of the topology of the ambient spaceE .

Proof. We have to prove that

(ﬂ Hf) NK#D
feE

where H¢ denotes the closed hyperplane {x; f(x) = u(f)/u(K)} associatedto f €
E’. As K iscompact, it sufficesto prove that

(ﬂ ka> NK#0
k=1’

for every finite family fy, ..., f, of functionalsin E’. Equivaently, attaching to such
afamily of functionalsthe operator

T:K—=R" T(x)=(fi(x), ..., fa(x))

we have to prove that T(K) contains the point p = “(—1}() (u(fy), ..., u(fn)). For, if
p ¢ T(X), then aseparation argumentyieldsan a= (ay, ..., an) € R" such that
(p, @ > sup{T(x), &

xeK

1 n n
3 k; agi(f) > sup k; afi(x).

Then g = Zﬂzl axfx will provide an example of a continuous affine function on
K for which u(g) > sup,c¢ 9(x), afact which contradictsLemma2. m
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When E is the Euclidean n— dimensional space, the norm and the weak conver-
gence are the same, so that the barycenter of every Popoviciu measure u on K ¢ R"

isgiven by the formula
: /
Xy = —— x du(x).
. u(K) Jk Heo

Two Popoviciu measures u and v on K, are said to be equivalent(abbreviated,
U ~ v) provided that

/ f(x)du(x):/ f(x)dv(x) forevery f € AK,R).
K K

Using the denseness of E'|x + R - 1 into A(K, R), we can rewrite the fact that x
isthe barycenter of u as

po~ O
Thefollowing result extendstheleft side part of the Hermite-Hadamard inequality:
THEOREM 1. ( The generalized Jensen-Steffensen inequaliBuppose that is
areal Radon measure on K witla(K) > 0. Then

f(xy) < ﬁ / f(x) du(x) for every continuous convex function f on K
K

if (and only if)y u is a Popoviciu measure.

Proof. The Necessity is clear. The Sufficiency follows from Lemmas 1 and 3
which giveus

f(xy) = sup{h(x,); he A(K,R), h< f}

=sup{ﬁ/K hdu; he A(K,R), h< f}

%
<——— [ fdu.m
u(K) Jk

We shall illustrate Theorem 1 by an application to Steffensen’s inequdlity (in the
discrete case).

Supposethat x; < ... < X, arered pointsinaninterval | and py, ..., p, arerea
welghts such that the condition (dSt) above is verified; considering the partial sums

S = Eik:l pi, this means
0<&<S ad S >0

Thenthediscretemeasure 4 = ZE: 1 Px O« isaPopoviciumeasurewith barycen-
ter

1 n
X, = — Z Drc X
Sl
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According to Theorem 1 above, we are led to the classical Steffensen inequality
([7], p- 109): For every continuous convex function f — R,

1 & 1
fl— kak> < = px f(Xk)-
EPAIE >

The continuous case can be obtained in a similar way. It is worth noticing that
Steffensen’s inequality also holds under the more general condition ( dEP).

Another straightforward application of Theorem 1 is the following inequality of
G. Szego: Ifa; > a, > .. > axm—1 > 0 and f is a convex function [0, a;], then

2m—1 2m—1
3 (- @) > f (2 <—1>k—1ak) .
k=1 k=1
This corresponds to the measure u = Y o™ " (—1)% 18, whose barycenter is
Xy = Sny (-1t
The reader can verify easily that many other inequalities with alternating signs are
conseguences of Theorem 1.

2. Thecase of 0— mass measures

The discussion above left open the case of real Radon measures ¢ on K with
1 (K) = 0. The anaogue of Theorem 1 is the following result:

ProPOSITION 1. Let u be a real Radon measure on K such thgK) = 0 and
/ f* du(x) > 0 forevery continuous convex function f on K
K

Then

/ f(x)du(x) > 0 for every continuous convex function f on K
K

Proof. Infact, by replacing u by y, = p + €5, (where z isany point of K and
€ > 0) we obtain a Popoviciu measure, which makes possible to apply Theorem 1.
Then

f(xu>-<u<K>+s></K F(x) du(x) + £f (2)

for every continuous convex function f on K, and the conclusion follows by letting
e—0.m

On intervals we can prove a better result:
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THEOREM 2. Let u be a real Radon measure da, b] such thatu([a b]) =
and

t b
/(t—x)du(x)>0 and / (x—t)du(x) >0
a t
for every te R. Then
/ f(x) du(x

for every convex function f ofa, b].

Proof. See the Popoviciu approximation of convex functions, noticed in the pre-
ceding section. ®

As an immediate consequence we obtain the following extension of the majoriza-
tion principle:

THEOREM 3. (L. Fuchs[4]; seedso[7], pp. 165-166). Let f: [a,b] = R bea
convex function. Then for every,X.., Xn, y1,...,Yn € [, b] andevery p, ..., pn €
R such that

i) x1> o> Xny Y12 .00 > Yn

r

i) E Pk Xk < E P« Yk forevery r=1 ,h—1

ii ) Z Pr Xic = Z PYk
we have the mequallty

n n
Z P f(x) < Z Px
k=1

Proof. (Inthe casewhen all weights are non-negative) . It suffices to verify that
the measure y = Z Pk (Oy, — O, ) fulfils the hypotheses of Theorem 2 above. For
example, to check that

t
/(t—x du(x Zpkt—yk Z (t—-x)t>0

for al t it sufficesto restrict to the casewhen t = x, . Or, in this case

Zpkt—)’k Zpkt_xk Zpk Zpk P =Xt
2 Z P (Xr = Vi) — Z P (Xr = Xi)

k=r+1 k=r+1
n
= > p(X—Y) =0
k=r+1

We pass now to the case of absolutely continuous measures:
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PROPOSITION 2. Let p(x) be a[a, b] a continuous or a monotonic densityxp
on an interval[a, b], such that

b t b
/ p(x)dx=0 and / p(x) dx > 0, / p(x)dx > 0
a a t

for every te [a,b]. Then
b
/ f(x)du(x) >0
a

for every convex function f ofa, b].

This alows us to retrieve the following remark due to L. Lupas [6]: Suppose
thatg: [—a,a] — R is an even function, nondecreasing@ra] andf: [-a,a] — R
is a convex function. Then

= a;f() dx>< /f dx)(%/ig(x)dx).

In fact, p(x) = g(x) — % ffa g(x) dx fulfils the conditions of Proposition 2
above.

3. Theextension of Choquet’s Theorem

The extension of the right hand ineguality in (HH) is a bit more subtle and makes
the object of Choquet’s theory, briefly summarized in the sequel. Given two Popoviciu
measures  and A on K, wesay that u ismajorizedby A (i.e, u < A) if

1 1
m/ f<X>du<X><m/K f(x) dA (x)

for every continuous convex function f : K — R. Therelation < isapartial ordering
on the set of all essentially positive Radon measureson K; usethe densenessof C — C
in C(K,R).

Notice that u ~ o implies & < u (by Theorem 1, the generalized Jensen-
Steffensen inequality).

THEOREM 4. ( Thegeneralization of Choquet’sTheorem) . Let u be a Popoviciu
measure on a metrizable compact convex subset K of a locally convex Hausdorff space
E . Then there exists a probability Radon meastuiren K such that the following two
conditions are verified

i) A =p and A and p have the same barycenter

i) The set Ext K of all extremal points of K is as;Gsubset of K and\ is
concentrated on Ext K(i.e., A(K\ExtK) = 0).

Under the hypotheses of Theorem 4 we get

) < i [ tdue < [ f0dae (ch)
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for every continuous convex function f : K — R, a fact which represents a full
extension of (HH) in the case of metrizablecompact convex sets. Notice that the right
part of (Ch) reflects the maximum principléor convex functions.

Ingeneral, A isnot unique, except for the case of simplices; see [11], ch. 9.

Proof. (of Theorem4). Thefact that theset Ext K of all extremal pointsof K is
a Gs— subset constitutes Proposition 1.3 in [11]. Here the assumption of metrizability
isessential. We pass now to the existence of A .

The upper envelope of afunction f in C(K, R),

f(x) =inf {h(x); he A(K,R)andh > f}
is concave, bounded and upper semicontinuous. Moreover:
i) f<fandf=Fiffisconcave.
ii)If f,ge C(K,R), then f +g< f+7.
See [11], p. 19, for details. These properties show that the functional

p:C(K,R) =R, p(f)=u(F)/u(K)

issubadditiveand positive-homogeneous. Accordingtothegeneralized Jensen-Steffensen
inequality, p dominates the linear functional

L:AK,R) = R, L(h)=h(x).

By the Hahn-Banach extensiontheorem, thereexistsafunctional v : C(K,R) — R
which extends L and

v(f) < p(f) forevery f € C(K, R).

If f e C(K R),with f <0, then f < 0 and u(f) < 0 (as u isaPopoviciu
measure). This fact showsthat v(f) < 0, i.e, v isapositive Radon measure. Since
v(1) = L(1) =1, v isactualy a Radon probability measure.

Onthe other hand, if f € C then v(—f) < p(—F)/u(K) = p(—f)/u(K), which
yields © < v. Moreover, u and v have the same barycenter (as they agree on
A(K, R).The proof ends by choosing a maximal Radon probability measure A > v,
which does the job in the classical case of Choquet theory. The existence of A is
motivatedin [11], ch. 4. m

According to the above discussion, if K = [a, b], then necessarily A isa convex
combination of the Dirac measures ¢, and &,, say A = (1— a)ea + ag, . Thisremark
yields Fink’s Hermite-Hadamard type inequality [3]:

b _ _
raE [, 00dut0 < D7 ey + TR g (FHH)

for every continuous convex functions fa, b] — R and every Popoviciu measyte
on[a, b]; asusudly, x,, denotesthe barycenter of , i.e,

1 b
Xy = m/a X du(x).
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Infact, checking

1 b
m/a f(x)du(x) < (1—a)-f(a)+a - f(b)

for f(x) = (x—a)/(b—a) and f(x) = (b—x)/(b—a) weobtain

X, —a . b—x,
—a >
b_a and respectively 1 — a > T

ie, a=(x,—a)/(b—a).

The argument above can be extended easily for all continuous convex functions
defined on n-dimensional simplices K = [Ag, Ag, ..., Aq] in R". Then the corre-
sponding analogue of (F) for Popoviciu measurespt onK will read as

a>

1

n

105 < gy 100K < VO (o A A (A
here X, denotes the barycenter of u, and [Ao, Ay, . LA .., Ay] denotes the sub-
simplex obtained by replacing Ax by X,; thisisthe sub-simplex oppositeto Ay, when
adding X, asanew vertex. Vol, representsthe Lebesgue measurein R".

In the case of closed balls K = Bgr(a) in R3, ExtK coincides with the sphere
Sk(a) and the recent paper by Dragomir [2] illustrates the classical Choquet theory in
the case where 1 isthe normalized Lebesgue measure on Bg(a) :

f(a)gm///gma)f(x)dvgm//sma) f(x)dS

His argument, based entirely on Calculus, avoids Choquet’s theory, but it cannot
be extended to arbitrary compact convex sets K and arbitrary Popoviciu measures on
K.

A final remark concerns the case of non-metrizable compact convex sets K. As
noticed E. Bishop and K. de Leeuw (Cf. [11], p. 7), in this case the set of extreme
points of K need not be a Borel set. However, by combining the argument of Theorem
4 above with their approach in the case of probability measures (Cf. [11], p. 24) we
obtain the following Choquet type theorem:

THEOREM 5. (The generalization of the Choquet-Bishop-de Leeuw Theprem
Let u be a Popoviciu measure on a compact convex subset K of a locally convex
Hausdorff space E. Then there exists a probability Radon measwa K such that
the following two conditions are verified

i) A =u and A and u have the the same barycenter

i) A vanisheson every Baire subset of K which is disjoint from the set of extreme
points of K.

Our final remark concerns the necessity of hypotheses in the right hand side
ineguality in (Ch). Precisely, it works beyond the framework of Popoviciu measures,
an example being (x2 — x) dx on [—1, 1] . See Fink [3], p. 230.
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